基于深度迁移学习进行时间序列分类

标题

Transfer learning for time series classification

作者

Fawaz Hassan Ismail,Forestier Germain,Weber Jonathan,Idoumghar Lhassane,Muller Pierre-Alain

下载地址

https://arxiv.org/abs/1811.01533

发布时间

2018/11/5

摘要

Transfer learning for deep neural networks is the process of first training a
base network on a source dataset, and then transferring the learned features
(the network's weights) to a second network to be trained on a target dataset.
This idea has been shown to improve deep neural network's generalization
capabilities in many computer vision tasks such as image recognition and object
localization. Apart from these applications, deep Convolutional Neural Networks
(CNNs) have also recently gained popularity in the Time Series Classification
(TSC) community. However, unlike for image recognition problems, transfer
learning techniques have not yet been investigated thoroughly for the TSC task.
This is surprising as the accuracy of deep learning models for TSC could
potentially be improved if the model is fine-tuned from a pre-trained neural
network instead of training it from scratch. In this paper, we fill this gap by
investigating how to transfer deep CNNs for the TSC task. To evaluate the
potential of transfer learning, we performed extensive experiments using the
UCR archive which is the largest publicly available TSC benchmark containing 85
datasets. For each dataset in the archive, we pre-trained a model and then
fine-tuned it on the other datasets resulting in 7140 different deep neural
networks. These experiments revealed that transfer learning can improve or
degrade the model's predictions depending on the dataset used for transfer.
Therefore, in an effort to predict the best source dataset for a given target
dataset, we propose a new method relying on Dynamic Time Warping to measure
inter-datasets similarities. We describe how our method can guide the transfer
to choose the best source dataset leading to an improvement in accuracy on 71
out of 85 datasets.

推荐理由

Mr-UC :

迁移学习和深度学习已经被广泛应用于计算机视觉和自然语言处理领域。但是在时间序列分类方面,至今没有完整的有代表性的工作。这是第一篇系统探讨基于深度迁移学习进行时间序列分类的论文。

1. 本站提供资源以极具性价比的价格出售,我们的定价远低于市场常见价格。无论是单独购买还是购买永久会员以下载全站资源,我们不提供任何相关技术服务。
2. 若遇到资源下载链接失效,请及时通过联系站长QQ以获取补发。
3. 所有本站资源仅供学习和研究目的使用。用户必须在24小时内删除所下载的资源,并严禁将其用于任何商业活动。对于因违反此规定引发的任何法律问题及连带责任,本站及发布者不承担任何责任。除非特别注明为原创,本站资源大多来源于网络,版权归原作者所有。若有侵权,请联系我们以便进行删除处理。
4. 本站提供的所有下载资源(包括软件等),我们保证未进行任何负面修改(不包括为改善功能或修复bug等正向优化或二次开发)。然而,我们无法保证资源的准确性、安全性和完整性。用户下载后应自行判断。本站旨在促进学习交流,并不保证所有源码完全无误或无bug。用户应明白,除非特别注明,【雾码资源】对提供下载的软件等不持有任何权利,其版权属于相应合法拥有者。
5. 请您仔细阅读以上内容,购买即表示您同意以上所有条款。
雾码资源 » 基于深度迁移学习进行时间序列分类

提供最优质的资源集合

立即查看 了解详情